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Introduction
The retina is the only organ that allows direct, non-
invasive, in-vivo visualisation of the microvasculature and 
neural tissues. It thus affords a unique opportunity for 
the non-invasive detection of systemic vascular and 
neurological diseases.1 In recent decades, our under
standing of retina–systemic disease relationships has 
relied on classic epidemiological studies based on obser
vable, human-defined retinal features (eg, retinopathy or 
retinal vascular calibre).2 The potential discovery of 
unobservable retinal features associated with systemic 
diseases has been enhanced by advances in artificial 
intelligence technology, specifically deep learning.3 Deep 
learning can be used to predict many systemic biomarkers 

using retinal photographs, obviating the need for 
observable, precharacterised retinal features.4 Using UK 
Biobank data, Poplin and colleagues showed that deep-
learning models could predict six cardiovascular risk 
factors using only retinal photographs with reasonable 
accuracy.5 Using these photographs, deep learning could 
accurately predict features such as age and sex, which 
otherwise cannot be similarly identified by human eyes 
alone. Additionally, deep learning was reported to predict 
serum haemoglobin concentrations from retinal photo
graphs, suggesting a potential new model for automated 
anaemia screening.6 More recently, several studies on 
deep learning-predicted systemic conditions from retinal 
photographs have been published.7–11
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Summary
Background The application of deep learning to retinal photographs has yielded promising results in predicting age, 
sex, blood pressure, and haematological parameters. However, the broader applicability of retinal photograph-based 
deep learning for predicting other systemic biomarkers and the generalisability of this approach to various populations 
remains unexplored.

Methods With use of 236 257 retinal photographs from seven diverse Asian and European cohorts (two health 
screening centres in South Korea, the Beijing Eye Study, three cohorts in the Singapore Epidemiology of Eye Diseases 
study, and the UK Biobank), we evaluated the capacities of 47 deep-learning algorithms to predict 47 systemic 
biomarkers as outcome variables, including demographic factors (age and sex); body composition measurements; 
blood pressure; haematological parameters; lipid profiles; biochemical measures; biomarkers related to liver function, 
thyroid function, kidney function, and inflammation; and diabetes. The standard neural network architecture of 
VGG16 was adopted for model development.

Findings In addition to previously reported systemic biomarkers, we showed quantification of body composition 
indices (muscle mass, height, and bodyweight) and creatinine from retinal photographs. Body muscle mass could be 
predicted with an R² of 0∙52 (95% CI 0·51–0·53) in the internal test set, and of 0∙33 (0·30–0·35) in one external test 
set with muscle mass measurement available. The R² value for the prediction of height was 0∙42 (0·40–0·43), of 
bodyweight was 0∙36 (0·34–0·37), and of creatinine was 0∙38 (0·37–0·40) in the internal test set. However, the 
performances were poorer in external test sets (with the lowest performance in the European cohort), with R² values 
ranging between 0∙08 and 0∙28 for height, 0∙04 and 0∙19 for bodyweight, and 0∙01 and 0∙26 for creatinine. Of the 
47 systemic biomarkers, 37 could not be predicted well from retinal photographs via deep learning (R²≤0∙14 across all 
external test sets).

Interpretation Our work provides new insights into the potential use of retinal photographs to predict systemic 
biomarkers, including body composition indices and serum creatinine, using deep learning in populations with 
a similar ethnic background. Further evaluations are warranted to validate these findings and evaluate the clinical 
utility of these algorithms.
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Nevertheless, the applications of artificial intelligence 
and deep learning in this field are in the early stages. The 
broader capacity of deep learning to predict other 
systemic biomarkers based on retinal photographs, as 
well as the generalisation of the trained deep-learning 
algorithm,12 remains unexplored. Hence, in this study, 
we developed 47 deep-learning algorithms to estimate 
47 systemic biomarkers and evaluated the algorithms’ 
performance with use of external datasets from diverse 
populations.

Methods
Study population and datasets
To develop and validate the deep-learning algorithms, we 
used cross-sectional datasets from 236 257 retinal 
photographs from 72 890 participants enrolled from 
two health screening centres in Seoul, South Korea 
(Severance Main Hospital and Severance Gangnam 
Hospital), one Beijing Eye Study cohort,13 three Singapore 
Epidemiology of Eye Diseases (SEED) study cohorts from 
Singapore (Chinese, Indian, and Malay participants),14,15 
and the UK Biobank.16 The sample selection is described 
in detail in the appendix (pp 6–8).

Retinal photograph-based deep-learning algorithms 
have been shown to have potential use as a screening tool 
for cardiovascular risk.5 Therefore, the population of 
interest was the general population in the communities. 
We used the dataset from Severance Main Hospital to 
train the deep-learning algorithms, because this dataset 
included the most biomarkers.

The dataset from Severance Main Hospital was 
divided randomly into developmental and internal test 

sets at an 8:2 ratio based on the individual level. The 
developmental set was again divided randomly into 
training (for updating model parameters) and validation 
sets (for hyperparameter tuning and model selection). 
To prevent model overfitting, we divided the dataset by 
individuals rather than by examinations. Therefore, 
multiple examinations from the same individual on 
different dates were not distributed across the training, 
validation, and internal test sets. We tested the algo
rithms developed from Severance Main Hospital on 
four external test sets, including those from the 
Severance Gangnam Hospital, the Beijing Eye Study, 
the SEED study, and the UK Biobank.

This study was approved by the Institutional Review 
Board of Severance Hospital, Yonsei University College 
of Medicine, Seoul, South Korea. Each included 
epidemiological study obtained ethical approval, and all 
participants provided written informed consent. The 
study adhered to the tenets of the Declaration of 
Helsinki. All datasets and retinal photographs were de-
identified according to the Health Insurance Portability 
and Accountability Act standards.

Retinal photography
Details of retinal photography and quality assessment 
are provided in the appendix (p 1). Briefly, six different 
types of retinal camera were used across study sites. We 
used only gradable retinal photographs. The gradability 
of the retinal photographs was determined by human 
graders except for those from the UK Biobank, where 
retinal photographs were sorted17 and graded using an 
in-house deep-learning algorithm for image quality 

Correspondence to: 
Prof Sung Soo Kim, Department 

of Ophthalmology, Institute of 
Vision Research, Severance 
Hospital, Yonsei University 
College of Medicine, Seoul 

03722, South Korea 
semekim@yuhs.ac

or

Prof Ching-Yu Cheng, Singapore 
Eye Research Institute, Singapore 

National Eye Centre, 
Singapore 169856 

chingyu.cheng@ 
duke-nus.edu.sg

Research in context

Evidence before this study
We searched PubMed and preprint archives for articles 
published in English that contained information on applying 
deep learning to retinal photographs for prediction of systemic 
biomarkers, published up to Aug 14, 2020. Our search terms 
included “retina”, “deep learning”, “cardiovascular”, “anaemia”, 
and “systemic”. Previous studies reported that deep learning 
could predict cardiovascular risk factors, including age, sex, 
glycated haemoglobin A1c, blood pressure, smoking status, and 
body-mass index, and haematological parameters, including 
serum haemoglobin concentration, haematocrit, and red blood 
cell count, from retinal photographs. However, application of 
deep learning in this field is still in the early stages, and the 
broader capacity of deep learning for predicting other systemic 
biomarkers based on retinal photographs remains unclear.

Added value of this study
We developed deep-learning algorithms to predict 47 systemic 
biomarkers from retinal photographs using seven diverse Asian 
and European cohorts. In addition to previously reported 
systemic biomarkers, we showed quantification of body 

composition measures (muscle mass, height, and bodyweight) 
and serum creatinine concentration from retinal photographs. 
Nevertheless, the performances were generally lower when 
validated in external test sets. Our study additionally provided 
information on systemic biomarkers that could not be 
predicted from retinal photographs, including those related 
to thyroid function, biochemical measures, haematological 
parameters other than haematocrit and haemoglobin, and 
C-reactive protein.

Implications of all the available evidence
The current findings add to evidence on the applicability of 
retinal photograph-based deep learning for predicting systemic 
biomarkers. Overall, deep learning can predict age, sex, and blood 
pressure well, and shows promising performance in predicting 
body composition indices and serum creatinine concentration. 
However, further research is warranted to assess the clinical 
utility of these predictions. If validated, these algorithms could 
be implemented as add-on tests in primary-care settings 
equipped with retinal cameras, such as in diabetic retinopathy 
screening centres.

See Online for appendix
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assessment. Retinal diseases, including age-related 
macular degeneration, diabetic retinopathy, and refer
able retinal disease, were defined from retinal photo
graphs except in the UK Biobank, in which the status of 
retinal diseases was self-reported.

Clinical outcome variables
We included 47 systemic biomarkers as outcome 
variables. In addition to demographic factors (age and 
sex), these biomarkers were selected on the basis of: 
relevance to cardiovascular diseases (blood pressure, 
body composition, kidney function, lipid profile, 
diabetes-related measures, and C-reactive protein); evi
dence of predictability from previous studies (haemo
globin and other haematological parameters); and 
available data from the blood (biochemical markers and 
liver and thyroid function markers). We excluded 
biomarkers that are related to tumours, those measured 
from urine and stool, or those that reflect acute episodes 
(eg, recent infection). All clinical examinations, tests, 
and retinal photography were performed on the same 
visit day.

Of the body composition measurements, fat mass 
and body muscle mass were calculated on the basis of 
bioelectrical impedance analyses performed using an 
ACCUNIQ BC720 (Selvas Healthcare, Daejeon, South 
Korea) during physical examinations at both health 
screening centres. Bioelectrical impedance analysis 
uses a sudden decrease in voltage due to resistance and 
reactance (impedance) from body tissues to determine 
impedance and estimate the fat-free and fat masses. 
The ACCUNIQ BC720 device was validated using a 
Hologic QDR-4500W fan-beam DEXA scanner 
(Hologic, Bedford, MA, USA). The percentage of body 
fat was calculated as the body fat mass divided by total 
bodyweight. Measurements of other biomarkers are 
described in the appendix (p 2). The actual, measured 
value of each biomarker was used as a reference 
standard for training the deep-learning algorithms.

Model development
We adopted the typical neural network architecture of 
VGG16.18 Retinal photographs were resized to 
300 × 300 pixels before inputting into VGG16. To 
prevent overfitting, we applied various well known 
augmentation methods, such as random crop, flip up-
down, rotation, brightness, and saturation. Because we 
did not use a pretrained network, the model parameters 
were trained from scratch. Because our datasets 
included retinal photographs from different ethnic 
groups that have different retinal pigmentation, we 
applied enhanced contrast techniques on retinal 
photographs before training and testing our algorithm. 
Saliency maps were generated using Guided Grad-
CAM19 from the test sets. Details of the model 
development and visualisation techniques are provided 
in the appendix (p 3).

Statistical analysis 
To evaluate performance, we used the mean absolute 
error with a coefficient of determination (R²) and Bland-
Altman plots20 for continuous variables (eg, age), and 
area under the receiver operating characteristic curve 
(AUC), sensitivity, specificity, and accuracy for binary 
variables (eg, sex). Sensitivity and specificity were 
determined from the Youden index. We used a non-
parametric bootstrap procedure with 2000 samples to 
obtain 95% CIs and reported the 2∙5th and 97∙5th 
percentiles.

Given the lack of a standard guideline for using R² to 
determine the level of predictive acceptance, we arbi
trarily defined predictable biomarkers as those that 
could be predicted by deep-learning algorithms with an 
R² of greater than 0∙15 in both the internal test set and 
at least one of the external test sets. Because age-related 
decline of body muscle mass is an important public 
health issue in older people, we trained and tested a 
separate deep-learning algorithm to predict muscle 
mass in this subgroup aged 65 years or older. To identify 
differences in performance across ethnicities, we used 
datasets that included more than one ethnic group (ie, 
SEED and the UK Biobank), because fair comparison 
would be possible only when the data were collected 
using the same protocol across multiple ethnic groups. 
Ethnicity in the UK Biobank was classified according to 
the category used by the UK Office of National Statistics: 
“White” (n=22 415) included British, Irish, and any other 
White background and “non-White” (n=2188) included 
Asian people (n=360), Black people (n=292), people with 
a mixed background (n=88), and other ethnic groups 
(n=1448; appendix p 8). We did not perform analysis for 
each of the four non-White ethnic groups, because 
meaningful analysis was not possible due to small 
sample sizes. We also performed subgroup analyses for 
biomarkers of age, sex, and systolic blood pressure 
according to the presence of retinal disease.

Role of the funding source
The funders had no role in study design, data collection, 
data analysis, data interpretation, or writing of the report. 
The corresponding authors had full access to all the data 
in the study and had final responsibility for the decision 
to submit for publication.

Results 
The development, validation, and external testing of 
our deep-learning algorithms for the prediction of 
systemic biomarkers included 236 257 retinal photo
graphs obtained using six different types of retinal 
camera (72 890 participants) from seven data sources: 
two health screening centres in South Korea, the 
Beijing Eye Study, three cohorts in the SEED study, and 
the UK Biobank (table 1). Similar characteristics bet
ween the developmental set and internal test set 
suggest that the data were randomly well divided. The 
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characteristics of other biomarkers are provided in the 
appendix (p 12).

First, we trained our deep learning algorithms based 
on 86 994 retinal photographs (denoted as the develop
mental set) from a health screening centre affiliated 
with Severance Main Hospital, then tested these algo
rithms using 21 698 retinal photographs (internal test 
set) from the same centre. Second, we tested the 
algorithms using 9324 retinal photographs (external test 
set 1) from a health screening centre affiliated with the 
Severance Gangnam Hospital. Finally, we further 

externally tested the algorithms using 4234 retinal 
photographs from the Beijing Eye Study (external test 
set 2), 63 275 retinal photographs from the SEED study 
in Singapore (external test set 3), and 50 732 retinal 
photographs from the UK Biobank (external test set 4).

Of the 47 deep-learning algorithms we developed, 
13 biomarkers showed either an R² of greater than 0∙15 or 
an AUC of greater than 0∙90 for predicting systemic 
biomarkers from retinal photographs in the internal test 
set, and ten biomarkers showed an R² of greater than 0∙15 
or an AUC of greater than 0∙90 in at least one external test 

Severance Main Hospital Severance 
Gangnam 
Hospital 
(external test 
set 1)

Beijing Eye 
Study  
(external test 
set 2)

SEED study 
(external test 
set 3)

UK Biobank 
(external test 
set 4)

Developmental set Internal test set

Participants 27 516 6879 4343 1060 7726 25 366

Examinations 43 497 10 849 4662 1060 7726 25 366

Retinal photographs 86 994 21 698 9324 4234 63 275 50 732

Retinal disease*

Referable retinal disease 2324 (5∙3%) 597 (5∙5%) 333 (7∙7%) NA NA NA

AMD NA NA NA 11 (1∙0%) 360 (4∙7%) 362 (1∙4%)

Diabetic retinopathy NA NA NA 38 (3∙6%) 597 (7∙7%) 288 (1∙1%)

Demographic factors

Age, years† 52∙92 (7∙51) 53∙00 (7∙67) 54∙51 (7∙06) 58∙85 (5∙71) 55∙12 (7∙57) 55∙13 (8∙16)

Sex

Female 14 941 (54∙3%) 3715 (54∙0%) 2680 (61∙7%) 660 (62∙3%) 3770 (48∙8%) 11 009 (43∙4%)

Male 12 575 (45·7%) 3164 (46∙0%) 1663 (38∙3%) 400 (37∙7%) 3956 (51∙2%) 14 357 (56∙6%)

Body composition

Body muscle mass, kg 45∙75 (9∙34) 45∙61 (9∙36) 46∙48 (9∙32) NA NA NA

Height, cm 166∙51 (8∙37) 166∙45 (8∙52) 166∙36 (8∙68) 161∙92 (7∙81) 161∙71 (8∙97) 169∙03 (9∙16)

Bodyweight, kg 66∙95 (12∙37) 66∙77 (12∙32) 68∙80 (13∙51) 68∙90 (11∙64) 66∙99 (13∙28) 77∙17 (15∙46)

Percentage body fat 27∙59 (6∙72) 27∙60 (6∙72) 26∙64 (6∙05) NA NA NA

Body-mass index, kg/m² 24∙02 (3∙23) 23∙96 (3∙16) 24∙72 (3∙61) 26∙24 (3∙85) 25∙61 (4∙68) 26∙93 (4∙59)

Body fat mass, kg 18∙49 (5∙92) 18∙43 (5∙83) 18∙47 (6∙15) NA NA NA

Kidney function test

Creatinine, mg/dL 0∙79 (0∙23) 0∙79 (0∙24) 0∙80 (0∙18) 0∙72 (0∙15) 0∙79 (0∙37) 0∙82 (0∙17)

Blood pressure

Systolic blood pressure, mm Hg 121∙06 (14∙17) 121∙01 (14∙12) 124∙62 (14∙81) 126∙78 (18∙70) 136∙86 (20∙67) 138∙18 (19∙28)

Diastolic blood pressure, mm Hg 78∙74 (11∙16) 78∙76 (11∙26) 76∙06 (10∙49) 70∙79 (11∙61) 78∙70 (10∙53) 81∙61 (10∙61)

Heart rate, beats per min 73∙37 (11∙18) 73∙56 (11∙31) 69∙76 (10∙71) NA NA NA

Haematological parameters

Haemoglobin, g/dL 14∙51 (1∙50) 14∙51 (1∙50) 14∙71 (1∙50) NA 13∙67 (1∙51) 14∙25 (1∙22)

Haematocrit, % 42∙62 (3∙96) 42∙60 (3∙96) 43∙94 (4∙13) NA NA 41∙63 (3∙47)

Red blood cell count, 10¹² per L 4∙70 (0∙44) 4∙69 (0∙44) 4∙81 (0∙47) NA 4∙75 (0∙53) 4∙53 (0∙41)

Data are presented as n, n (% of participants), or mean (SD). 15 selected systemic biomarkers are shown; the other systemic biomarkers evaluated are presented in the 
appendix (p 12). SEED=Singapore Epidemiology of Eye Diseases. NA=data not available. AMD=age-related macular degeneration. *Referable retinal disease in health 
screening centres included a wide range of different retinal diseases (such as AMD, diabetic retinopathy, epiretinal membrane, or retinal vein occlusion) that require referral 
to an ophthalmologist for further management; number by each specific retinal disease is not available. †Participant age range was 40–69 years for all datasets except the 
Beijing Eye study, for which the range was 50–69 years.

Table 1: Characteristics of the study populations
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Severance Main Hospital 
(internal test set)

Severance Gangnam 
Hospital (external test 
set 1)

Beijing Eye Study 
(external test set 2)

SEED study  
(external test set 3)

UK Biobank  
(external test set 4)

Demographic factors

Sex

AUC 0∙96 (0∙96 to 0∙96) 0∙90 (0∙89 to 0∙91) 0∙91 (0∙89 to 0∙93) 0∙90 (0∙89 to 0∙91) 0∙80 (0∙79 to 0∙80)

Accuracy 0∙91 (0∙90 to 0∙91) 0∙82 (0∙81 to 0∙83) 0∙85 (0∙82 to 0∙87) 0∙83 (0∙82 to 0∙84) 0∙70 (0∙69 to 0∙70)

Sensitivity 0∙93 (0∙91 to 0∙94) 0∙90 (0∙88 to 0∙92) 0∙83 (0∙77 to 0∙89) 0∙70 (0∙64 to 0∙80) 0∙70 (0∙67 to 0∙76)

Specificity 0∙82 (0∙80 to 0∙85) 0∙80 (0∙79 to 0∙81) 0∙89 (0∙84 to 0∙93) 0∙84 (0∙83 to 0∙86) 0∙72 (0∙71 to 0∙73)

Age, years

MAE 2∙43 (2∙39 to 2∙47) 3∙38 (3∙30 to 3∙46) 3∙78 (3∙63 to 3∙93) 3∙77 (3∙71 to 3∙82) 4∙50 (4∙46 to 4∙55)

R² 0∙83 (0∙82 to 0∙84) 0∙61 (0∙59 to 0∙64) 0∙36 (0∙31 to 0∙41) 0∙63 (0∙62 to 0∙64) 0∙51 (0∙50 to 0∙52)

Body composition

Body muscle mass, kg

MAE 5∙11 (5∙04 to 5∙19) 6∙09 (5∙96 to 6∙23) NA NA NA

R² 0∙52 (0∙51 to 0∙53) 0∙33 (0∙30 to 0∙35) NA NA NA

Height, cm

MAE 5∙20 (5∙13 to 5∙28) 5∙93 (5∙80 to 6∙05) 5∙48 (5∙23 to 5∙73) 6∙21 (6∙10 to 6∙31) 7∙09 (7∙02 to 7∙15)

R² 0∙42 (0∙40 to 0∙43) 0∙28 (0∙25 to 0∙30) 0∙23 (0∙18 to 0∙27) 0∙25 (0∙24 to 0∙27) 0∙08 (0∙06 to 0∙09)

Bodyweight, kg

MAE 7∙69 (7∙57 to 7∙81) 9∙63 (9∙42 to 9∙84) 8∙28 (7∙89 to 8∙68) 9∙69 (9∙51 to 9∙86) 11∙81 (11∙69 to 11∙92)

R² 0∙36 (0∙34 to 0∙37) 0∙19 (0∙16 to 0∙22) 0∙17 (0∙11 to 0∙22) 0∙11 (0∙10 to 0∙13) 0∙04 (0∙03 to 0∙05)

Percentage body fat*

MAE 4∙71 (4∙64 to 4∙78) 4∙50 (4∙39 to 4∙60) NA NA NA

R² 0∙23 (0∙21 to 0∙24) 0∙08 (0∙05 to 0∙12) NA NA NA

Body-mass index*, kg/m²

MAE 2∙15 (2∙12 to 2∙19) 2∙37 (2∙31 to 2∙42) 2∙90 (2∙76 to 3∙04) 3∙52 (3∙45 to 3∙58) 3∙47 (3∙44 to 3∙51)

R² 0∙17 (0∙16 to 0∙18) 0∙14 (0∙12 to 0∙16) 0∙06 (0∙02 to 0∙10) 0∙04 (0∙03 to 0∙05) 0∙01 (0∙002 to 0∙02)

Kidney function test

Creatinine, mg/dL

MAE 0∙11 (0∙11 to 0∙11) 0∙12 (0∙12 to 0∙12) 0∙11 (0∙10 to 0∙11) 0∙17 (0∙16 to 0∙18) 0∙15 (0∙15 to 0∙16)

R² 0∙38 (0∙37 to 0∙40) 0∙26 (0∙24 to 0∙28) 0∙12 (0∙06 to 0∙18) 0∙06 (0∙04 to 0∙09) 0∙01 (0∙001 to 0∙02)

Blood pressure

Diastolic blood pressure, mm Hg

MAE 7∙20 (7∙09 to 7∙30) 7∙59 (7∙26 to 7∙91) 8∙09 (7∙72 to 8∙47) 7∙14 (7∙02 to 7∙26) 7∙67 (7∙59 to 7∙74)

R² 0∙35 (0∙33 to 0∙36) 0∙21 (0∙18 to 0∙24) 0∙23 (0∙17 to 0∙28) 0∙27 (0∙25 to 0∙29) 0∙16 (0∙15 to 0∙17)

Systolic blood pressure, mm Hg

MAE 9∙29 (9∙16 to 9∙43) 10∙55 (10∙31 to 10∙79) 13∙20 (12∙58 to 13∙83) 13∙95 (13∙69 to 14∙22) 13∙57 (13∙44 to 13∙70)

R² 0∙31 (0∙29 to 0∙32) 0∙17 (0∙15 to 0∙20) 0∙19 (0∙15 to 0∙24) 0∙21 (0∙19 to 0∙22) 0∙20 (0∙19 to 0∙21)

Haematological parameters

Haematocrit, %

MAE 2∙03 (2∙00 to 2∙06) 2∙81 (2∙75 to 2∙88) NA NA 2∙62 (2∙59 to 2∙64)

R² 0∙57 (0∙56 to 0∙59) 0∙26 (0∙23 to 0∙30) NA NA 0∙09 (0∙08 to 0∙11)

Haemoglobin, g/dL

MAE 0∙79 (0∙78 to 0∙80) 0∙96 (0∙94 to 0∙98) NA 0∙98 (0∙96 to 1∙00) 0∙93 (0∙92 to 0∙94)

R² 0∙56 (0∙55 to 0∙57) 0∙33 (0∙30 to 0∙36) NA 0∙32 (0∙29 to 0∙35) 0∙06 (0∙04 to 0∙08)

Red blood cell count*, 10¹² per L

MAE 0∙26 (0∙25 to 0∙26) 0∙35 (0∙34 to 0∙35) NA 0∙37 (0∙36 to 0∙38) 0∙33 (0∙32 to 0∙33)

R² 0∙45 (0∙44 to 0∙47) 0∙14 (0∙10 to 0∙17) NA 0∙14 (0∙11 to 0∙17) –0∙02 (–0∙04 to –0∙01)

Data in parentheses are 95% CIs. SEED=Singapore Epidemiology of Eye Diseases. AUC=area under the receiver operating characteristics curve. MAE=mean absolute error. 
NA=data not available. *Percentage body fat, body-mass index, and red blood cell count are not predictable biomarkers based on our criteria.

Table 2: Biomarkers with the highest performance from retinal photographs via deep learning
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set (table 2). The algorithms clearly predicted sex 
(AUC 0∙96 [95% CI 0·96–0·96]; accuracy 0∙91 [0·90–0·91]) 
and age (mean absolute error 2∙43 years [2·39–2·47]; 
R²=0∙83 [0·82–0·84]) in the internal test set. The 
algorithm that predicted sex performed well in the four 

external test sets (AUC 0∙80–0∙91). The age prediction 
algorithm yielded R² values of 0∙36 to 0∙63 in the four 
external test sets.

Regarding the body composition biomarkers, our deep-
learning algorithms achieved an R² of 0∙52 (95% CI 
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0·51–0·53) for predicting body muscle mass, 0∙42 
(0·40–0·43) for height, and 0∙36 (0·34–0·37) for body
weight in the internal test set. The body muscle mass was 
also predicted in external test set 1, with an R² of 0∙33 
(0·30–0·35). In subgroup analysis of older people (aged 
≥65 years; appendix p 4), the results showed reasonable 
performance, with a mean absolute error of 5∙90 kg 
(5∙58–6∙21) and an R² of 0∙22 (0∙15–0∙28) in external test 
set 1. Across external test sets 1–3, the deep-learning 
algorithms for prediction of height and bodyweight 
achieved R² values of between 0∙23 and 0∙28 for height 
and 0∙11 and 0∙19 for bodyweight. For both height and 
bodyweight predictions, the validation performance was 
lowest in external test set 4 (R²≤0∙08). Our algorithm 
could predict body-mass index (BMI), with R² values of 
0∙17 (0·16–0·18) in the internal test set and 
0∙14 (0·12–0·16), 0∙06 (0·02–0·10), 0∙04 (0·03–0·05), 
and 0∙01 (0·002–0·02) in external test sets 1–4, 
respectively. The percentage body fat was predicted with 
an R² of 0∙23 (0·21–0·24) in the internal test set, but the 
performance was poor, with an R² of 0∙08 (0·05–0·12) in 
external test set 1. Percentage body fat was not available for 
the other datasets.

Our algorithm for predicting serum creatinine concen
tration achieved an R² of 0∙38 (95% CI 0·37 to 0·40) in 
the internal test set, 0∙26 (0·24 to 0·28) in external test 
set 1, and 0∙12 (0·06 to 0·18) in external test set 2. 
However, the predictive performance was relatively poor, 
with an R² of 0∙06 (0·04 to 0·09) in external test set 3, 
and 0∙01 (0·001 to 0·02) in external test set 4. Our 
algorithm for predicting blood pressure yielded an R² of 
0∙35 (0·33 to 0·36) for diastolic blood pressure and 
0∙31 (0·29 to 0·32) for systolic blood pressure in the 
internal test set. The predictions of blood pressure 
yielded R² values of 0∙16–0∙27 for diastolic blood 

pressure and 0∙17–0∙21 for systolic blood pressure in all 
external test sets. Our deep-learning algorithms for 
haematological parameters could predict the haematocrit 
level (R²=0∙57 [0·56 to 0·59]), haemoglobin concentration 
(R²=0∙56 [0·55 to 0·57]), and red blood cell count 
(R²=0∙45 [0·44 to 0·47]) in the internal test set. However, 
in external test set 4, R² values were 0∙09 (0·08 to 0·11) 
for haematocrit, 0∙06 (0∙04 to 0∙08) for haemoglobin, 
and –0∙02 (–0∙04 to –0∙01) for red blood cell count.

In general, the algorithms performed poorly in 
external test set 4. Specifically, the deep-learning 
algorithms for prediction of height, bodyweight, BMI, 
creatinine, haematocrit, haemoglobin, and red blood cell 
counts showed limited generalisability in external test 4 
(R²≤0∙09). As shown in the Bland-Altman plots (figure), 
proportional bias was observed, indicating that the 
predicted values in the lower range were overestimated 
and those in the higher range were underestimated.

Other biomarkers that could not be well predicted from 
retinal photographs via deep learning (R² <0∙15 in the 
internal test set and external sets) are described in the 
appendix (p 13). Our deep-learning algorithms for six 
biomarkers yielded an R² of 0∙10–0∙15 in the internal 
test set and of 0∙02–0·09 in external test set 1: lipid 
profile (HDL cholesterol and triglyceride), liver function 
test (γ-glutamyl transferase and alanine amino
transferase), and diabetes blood test (glycated haemo
globin A1c [HbA1c] and fasting glucose). 28 other 
biomarkers, such as C-reactive protein and free thyroxine, 
could not be predicted from retinal photographs via deep 
learning.

We applied our algorithms to each ethnic group in the 
SEED study (comprising Chinese, Indian, and Malay 
populations) and the UK Biobank (comprising White 
and non-White populations; table 3). In SEED, sex, age, 

Figure: Bland-Altman plots for predicting systemic biomarkers
The x-axes represent the mean of the measured and predicted values, and the y-axes represent the difference between the measured and predicted values. Each dot represents one examination in the 
internal test set (Severance Main Hospital; blue dots), the external test set 1 (Severance Gangnam Hospital; orange dots), or the external test set 4 (UK Biobank; green dots). The dashed lines represent 
the mean of the difference with 95% limits of agreement (1∙96 × SD). ICC and slope of linear fit are presented with 95% CIs. BMI=body-mass index. BP=blood pressure. ICC=intraclass correlation 
coefficient. RBC=red blood cell.
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and diastolic blood pressure were well predicted across 
the three ethnic groups. However, for biomarkers such 
as sex, height, bodyweight, systolic blood pressure, and 
red blood cell count, the algorithms’ performances were 
better in the Chinese population compared with the 
Malay or Indian populations. In the UK Biobank, the 
algorithms’ performances for bodyweight, BMI, crea
tinine, and haematological parameters were similarly 
poor in White and non-White groups, whereas those for 
sex, age, height, and diastolic and systolic blood pressure 
were better in the non-White group compared with the 
White group.

In subgroup analyses, the presence of retinal disease 
was not found to substantially influence the algorithms’ 
performance (appendix p 5).

We used saliency maps to identify the area from which 
the deep-learning algorithms might have predicted 
systemic biomarkers (appendix pp 9–11). Models trained 
to predict age and sex primarily highlighted the optic disc 
and retinal vessels. Models that predicted haematocrit, 
haemoglobin, systolic blood pressure, and diastolic blood 
pressure used attention masks focused on the features of 
retinal vessels. The optic disc area and features were 
mainly used to predict measures of body composition 

SEED study UK Biobank

Chinese (n=2598) Indian (n=2752) Malay (n=2376) White (n=22 415) Non-White (n=2188)

Demographic factors

Sex

AUC 0∙95 (0∙94 to 0∙96) 0∙91 (0∙90 to 0∙92) 0∙93 (0∙92 to 0∙94) 0∙78 (0∙78 to 0∙79) 0∙86 (0·84 to 0·89)

Accuracy 0∙88 (0∙86 to 0∙89) 0∙76 (0∙74 to 0∙78) 0∙84 (0∙83 to 0∙86) 0∙72 (0∙71 to 0∙72) 0∙76 (0·73 to 0·79)

Sensitivity 0∙89 (0∙84 to 0∙94) 0∙84 (0∙75 to 0∙90) 0∙86 (0∙83 to 0∙89) 0∙70 (0∙66 to 0∙76) 0∙85 (0·77 to 0·91)

Specificity 0∙88 (0∙84 to 0∙92) 0∙84 (0∙80 to 0∙89) 0∙86 (0∙82 to 0∙90) 0∙92 (0∙91 to 0∙93) 0∙76 (0·71 to 0·81)

Age, years

MAE 3∙71 (3∙61 to 3∙81) 3∙88 (3∙78 to 3∙98) 3∙69 (3∙58 to 3∙79) 4∙52 (4∙48 to 4∙57) 3∙45 (3·28 to 3·62)

R² 0∙57 (0∙55 to 0∙60) 0∙60 (0∙57 to 0∙62) 0∙70 (0∙68 to 0∙72) 0∙51 (0∙49 to 0∙52) 0∙65 (0·61 to 0·70)

Body composition

Height, cm

MAE 5∙61 (5∙45 to 5∙77) 6∙65 (6∙47 to 6∙83) 7∙65 (7∙43 to 7∙86) 7∙14 (7∙07 to 7∙20) 6∙61 (6·31 to 6·91)

R² 0∙30 (0∙27 to 0∙32) 0∙19 (0∙16 to 0∙22) –0∙09 (–0∙16 to –0∙02) 0∙06 (0∙05 to 0∙07) 0∙18 (0·13 to 0·22)

Body weight, kg

MAE 8∙41 (8∙16 to 8∙67) 10∙45 (10∙10 to 10∙80) 9∙96 (9∙64 to 10∙28) 11∙87 (11∙75 to 11∙99) 11∙49 (10·95 to 12·04)

R² 0∙19 (0∙16 to 0∙22) –0∙06 (–0∙10 to –0∙02) 0∙10 (0∙06 to 0∙13) 0∙04 (0∙03 to 0∙05) 0∙06 (0·02 to 0·10)

Body-mass index, kg/m²

MAE 2∙69 (2∙61 to 2∙78) 3∙91 (3∙78 to 4∙05) 4∙19 (4∙04 to 4∙34) 3∙41 (3∙37 to 3∙45) 3∙42 (3·24 to 3·60)

R² 0∙07 (0∙04 to 0∙09) –0∙28 (–0∙32 to –0∙23) –0∙23 (–0∙28 to –0∙18) 0∙01 (0∙003 to 0∙01) 0∙01 (–0·03 to 0·04)

Kidney function test

Creatinine, mg/dL

MAE 15∙30 (14∙17 to 16∙42) 15∙87 (14∙81 to 16∙93) 19∙42 (17∙87 to 20∙96) 0∙13 (0∙13 to 0∙13) 0∙15 (0·13 to 0·16)

R² 0∙08 (0∙05 to 0∙15) 0∙05 (0∙02 to 0∙09) –0∙03 (–0∙05 to –0∙01) –0∙001 (–0∙01 to 0∙01) –0∙01 (–0·05 to 0·04)

Blood pressure

Diastolic blood pressure, mm Hg

MAE 6∙72 (6∙52 to 6∙91) 7∙17 (6∙97 to 7∙38) 7∙56 (7∙32 to 7∙80) 7∙69 (7∙61 to 7∙77) 7∙25 (6·91 to 7·59)

R² 0∙28 (0∙25 to 0∙32) 0∙23 (0∙19 to 0∙26) 0∙27 (0∙24 to 0∙30) 0∙16 (0∙15 to 0∙17) 0∙26 (0·21 to 0·31)

Systolic blood pressure, mm Hg

MAE 12∙20 (11∙82 to 12∙58) 13∙22 (12∙81 to 13∙63) 16∙72 (16∙14 to 17∙30) 13∙65 (13∙51 to 13∙79) 12∙52 (11·89 to 13·14)

R² 0∙25 (0∙23 to 0∙28) 0∙21 (0∙19 to 0∙23) 0∙06 (0∙03 to 0∙10) 0∙20 (0∙19 to 0∙20) 0∙27 (0·23 to 0·31)

Haematological parameters

Haemoglobin, g/dL

MAE 1∙06 (1∙05 to 1∙07) 1∙05 (1∙04 to 1∙06) 0∙97 (0∙96 to 0∙98) 0∙92 (0∙91 to 0∙93) 1∙07 (1·02 to 1·12)

R² 0∙10 (0∙07 to 0∙12) 0∙29 (0∙28 to 0∙30) 0∙32 (0∙31 to 0∙34) 0∙07 (0∙05 to 0∙08) –0∙01 (–0·16 to 0·13)

Red blood cell count, 10¹²/L

MAE 0∙35 (0∙34 to 0∙35) 0∙41 (0∙40 to 0∙41) 0∙42 (0∙41 to 0∙42) 0∙32 (0∙32 to 0∙33) 0∙38 (0·36 to 0·40)

R² 0∙19 (0∙17 to 0∙20) –0∙09 (–0∙10 to –0∙07) –0∙05 (–0∙07 to –0∙03) –0∙03 (–0∙05 to –0∙02) 0∙07 (0·01 to 0·14)

Data in parentheses are 95% CIs. SEED=Singapore Epidemiology of Eye Diseases. AUC=area under the receiver operating characteristics curve. MAE=mean absolute error.

Table 3: Performance by ethnic group in the SEED study and UK Biobank test sets
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(eg, BMI, percentage body fat, and bodyweight). No 
specific features were identified from the saliency maps 
used to predict other biomarkers.

Discussion
In this study, we developed deep-learning algorithms to 
predict 47 systemic biomarkers from retinal photographs. 
More than 230 000 retinal photographs taken using 
diverse camera types from approximately 72 000 partici
pants in seven diverse Asian and European cohorts were 
used. One key finding was the quantification of a cluster 
of body composition measures (muscle mass, height, 
and bodyweight), and creatinine from retinal photo
graphs. Our results also confirmed previous studies that 
used deep learning to predict age, sex, systolic blood 
pressure, diastolic blood pressure, BMI, haematocrit, 
serum haemoglobin, and red blood cell counts.5,6 Never
theless, the performance of deep-learning algorithms for 
systemic biomarkers was lower in the external test sets.

Body composition measures, such as muscle mass, 
have recently gained attention as more reliable bio
markers than BMI for nutritional status as well as for 
cardiometabolic risk.21 Sarcopenia is defined as an age-
related process of skeletal muscle loss, which can be 
assessed via changes in body muscle mass. International 
clinical practice guidelines recommend that adults aged 
65 years or older should be screened annually for 
sarcopenia.22 Although sarcopenia is an important 
concern in ageing populations, the lack of suitable tools 
limits large-scale population screening. In this study, we 
used bioelectrical impedance analysis as the reference 
standard, and our deep-learning algorithm could quantify 
body muscle mass from retinal photographs with a mean 
absolute error of 6∙09 kg (R²=0∙33) in external set 1. Our 
subgroup analysis in older adults (aged ≥65 years) showed 
reasonable performance, with a mean absolute error of 
5∙90 kg (R²=0∙22) in external test set 1. Therefore, further 
studies are needed to determine whether retinal photo
graphy might be a good adjunctive screening tool for 
sarcopenia.

Chronic kidney disease has been labelled a silent 
killer by the American Society of Nephrology, which 
recommends routine kidney function screening in the 
general population.23 In a study using retinal photo
graphs,24 a deep-learning algorithm was able to predict 
chronic kidney disease (AUC 0∙73) with modest 
generalisability. Chronic kidney disease was defined as a 
binary outcome on the basis of an estimated glomerular 
filtration rate (eGFR) of less than 60 units. eGFR was esti
mated using the Chronic Kidney Disease Epidemiology 
Collaboration equation, using information on creatinine 
level, age, sex, and bodyweight.24 Deep-learning algorithms 
can predict age and sex with high accuracy, which could 
explain why deep learning based on eGFR can predict 
chronic kidney disease with superior performance 
compared with deep learning based on serum creatinine 
concentration, as in our study.

Our study supported the previous findings by Poplin 
and colleagues,5 who used retinal photographs from the 
UK Biobank and EyePACs datasets and developed deep-
learning algorithms to predict age, sex, HbA1c, systolic 
blood pressure, diastolic blood pressure, and BMI, and 
those by Mitani and colleagues,6 who reported algorithms 
to predict serum haemoglobin concentrations, haemato
crit, and red blood cell count using retinal photographs 
from the UK Biobank. Compared with these studies, our 
algorithms generally yielded higher R² values in 
predicting age, HbA1c, diastolic blood pressure, BMI, hae
moglobin, haematocrit, and red blood cell count 
(appendix p 14). In saliency maps shown by Poplin and 
colleagues,5 the blood vessels and optic disc were 
highlighted for age, sex, and systolic blood pressure 
prediction. Similarly, our saliency maps (internal and 
external test sets) highlighted retinal vessels and the 
optic disc as the main features. These observations are 
biologically plausible given that previous studies have 
shown that age, sex, and blood pressure are important 
determinants of retinal vessel calibre.25

Previous studies provide little information on the 
performance of deep-learning algorithms across multiple 
health-care settings. In the present study, using multiple 
datasets collected from different sites and settings, only 
three of the 47 trained deep-learning algorithms (those 
for age, sex, and diastolic and systolic blood pressure) 
showed a consistently good performance across all exter
nal sets, indicating that generalisation was only applicable 
to selective biomarkers. Our study also provides infor
mation about clusters of systemic biomarkers that could 
not be predicted from retinal photographs, including 
those related to thyroid function, most biochemical mea
sures, haematological parameters other than haematocrit 
and haemoglobin, and C-reactive protein. Retinal 
microvascular abnormalities reflect cumulative micro
circulatory damage from hypertension, ageing, and other 
processes.26 Therefore, retinal changes could be more 
useful for predicting biomarkers related to cardiovascular 
and chronic disease, compared with other time-sensitive 
biomarkers.

Our subgroup analysis showed that the predictive perfor
mances for systemic biomarkers differed by ethnicity. 
Although the reason for this ethnic difference is unclear, a 
possible explanation is different basic profiles of bio
markers across ethnicities. Given that our algorithms were 
trained on Asian data, the poorer performances in body 
composition measures observed in the UK Biobank dataset 
could be due to the body composition profile of the Asian 
population being generally different to that of the European 
population.27 BMI also differs between the three Asian 
ethnic groups in the SEED study,28 which partially explains 
the lower performance for BMI prediction in the Malay 
and Indian populations. Given the apparent impact of 
ethnicity on the performance of deep-learning algorithms 
based on retinal photographs, we recommend that similar 
studies in the future also present findings by ethnicity.
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Retinal photography is non-invasive and increasingly 
available in primary-care settings and screening prog
rammes (eg, diabetic retinopathy screening29). Our 
algorithms could potentially be used as add-on tests to 
identify individuals who require referral for confirmatory 
tests (eg, dual-energy x-ray absorptiometry for sarcopenia, 
venous blood puncture for serum creatinine or 
haemoglobin). Because the performance of age and sex 
prediction is particularly good, sophisticated combination 
of these deep-learning algorithms could eventually be 
used to predict cardiovascular risk.5 However, the current 
evaluation does not support firm conclusions regarding 
the value of deep learning for disease screening in new 
populations.

Our study had several limitations. First, because images 
with artifacts or of poor quality were excluded, our results 
were unlikely to be confounded by image quality issues, 
but the performance of our algorithm needs to be further 
evaluated in real-world datasets, which could contain 
images of varying quality. Second, the biomarker of body 
muscle mass was only available in the two Korean 
datasets. Therefore, further replication is needed to 
confirm it as a predictable biomarker and its external 
validity. Third, although retinal photography and all other 
tests were done on the same visit day, some biomarker 
values (eg, systolic blood pressure, bodyweight) could still 
fluctuate over time. Although this effect cannot be 
quantified, these fluctuations could cause information 
bias. However, the relatively large scale of our data might 
neutralise this bias. Lastly, we acknowledge that our deep-
learning algorithms might have been overtrained because 
they did not perform well in the external test sets. 
Additionally, the fundamental differences among the 
internal and external test sets (eg, different fundus 
cameras, brightness and fields of photographs, and 
ethnicities) could have resulted in poorer performance in 
the external test sets.

In conclusion, we developed deep-learning algorithms 
to predict systemic biomarkers from retinal photographs. 
In addition to previously reported biomarkers (age, sex, 
blood pressure, and haematological parameters), we 
identified novel predictable biomarkers, including body 
composition measurements (height, bodyweight, and 
body muscle mass) and kidney function (creatinine). 
However, our findings show that optimal prediction in 
external test sets was applicable to only some biomarkers, 
and we found that the retina provides little information 
about many other systemic biomarkers. Given the 
challenge of generalisation, further evaluation of clinical 
utility is needed in future studies.
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