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Summary
Background Biological ageing markers are useful to risk stratify morbidity and mortality more precisely than
chronological age. In this study, we aimed to develop a novel deep-learning-based biological ageing marker (referred to
as RetiPhenoAge hereafter) using retinal images and PhenoAge, a composite biomarker of phenotypic age.

Methods We used retinal photographs from the UK Biobank dataset to train a deep-learning algorithm to predict the
composite score of PhenoAge. We used a deep convolutional neural network architecture with multiple layers to
develop our deep-learning-based biological ageing marker, as RetiPhenoAge, with the aim of identifying patterns
and features in the retina associated with variations of blood biomarkers related to renal, immune, liver functions,
inflammation, and energy metabolism, and chronological age. We determined the performance of this biological
ageing marker for the prediction of morbidity (cardiovascular disease and cancer events) and mortality (all-cause,
cardiovascular disease, and cancer) in three independent cohorts (UK Biobank, the Singapore Epidemiology of Eye
Diseases [SEED], and the Age-Related Eye Disease Study [AREDS] from the USA). We also compared the
performance of RetiPhenoAge with two other known ageing biomarkers (hand grip strength and adjusted
leukocyte telomere length) and one lifestyle factor (physical activity) for risk stratification of mortality and
morbidity. We explored the underlying biology of RetiPhenoAge by assessing its associations with different
systemic characteristics (eg, diabetes or hypertension) and blood metabolite levels. We also did a genome-wide
association study to identify genetic variants associated with RetiPhenoAge, followed by expression quantitative
trait loci mapping, a gene-based analysis, and a gene-set analysis. Cox proportional hazards models were used to
estimate the hazard ratios (HRs) and corresponding 95% CIs for the associations between RetiPhenoAge and the
different morbidity and mortality outcomes.

Findings Retinal photographs for 34 061 UK Biobank participants were used to train the model, and data for
9429 participants from the SEED cohort and for 3986 participants from the AREDS cohort were included in the study.
RetiPhenoAge was associated with all-cause mortality (HR 1⋅92 [95% CI 1⋅42–2⋅61]), cardiovascular disease mortality
(1⋅97 [1⋅02–3⋅82]), cancer mortality (2⋅07 [1⋅29–3⋅33]), and cardiovascular disease events (1⋅70 [1⋅17–2⋅47]),
independent of PhenoAge and other possible confounders. Similar findings were found in the two independent
cohorts (HR 1⋅67 [1⋅21–2⋅31] for cardiovascular disease mortality in SEED and 2⋅07 [1⋅10–3⋅92] in AREDS).
RetiPhenoAge had stronger associations with mortality and morbidity than did hand grip strength, telomere
length, and physical activity. We identified two genetic variants that were significantly associated with
RetiPhenoAge (single nucleotide polymorphisms rs3791224 and rs8001273), and were linked to expression
quantitative trait locis in various tissues, including the heart, kidneys, and the brain.

Interpretation Our new deep-learning-derived biological ageing marker is a robust predictor of mortality and morbidity
outcomes and could be used as a novel non-invasive method to measure ageing.
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Introduction
Globally, the number of people aged 80 years or older is
projected to reach 425 million by 2050,1 which is likely to
result in an increased prevalence of several diseases,
including cardiovascular and other chronic diseases.2–4

Identifying robust ageing biomarkers for disease risk
stratification could allow early implementation of health
www.thelancet.com/healthy-longevity Vol ▪ ▪ 2024
interventions to reduce the burden of these diseases. In this
context, the concept of biological age is useful for examining
differences in ageing rates among individuals and to
identify the physiological changes associated with the
ageing process.
Different measurements have been used to estimate

biological ageing, including clinical and serum-based
1
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Research in context

Evidence before this study
Biological ageing markers are useful to risk stratify morbidity
and mortality more precisely than chronological age. We searched
PubMed and Google Scholar from database inception to
Sept 30, 2023, for research articles written in English using the
search terms: “biological age” and “risk stratification” and
“mortality” or “morbidity”. Different measurements have been
used to estimate biological ageing such as serum-based
biomarkers. However, data collection methods are usually
relatively invasive and samples require laboratory processing,
thus limiting their clinical application.

Added value of this study
We developed and validated a novel marker of biological ageing,
RetiPhenoAge, which was developed and trained on retinal
photographs using a deep learning algorithm with composite
clinical phenotypic information. We showed that RetiPhenoAge is

strongly associated with several mortality and morbidity
outcomes, including cardiovascular disease and renal outcomes,
independent of confounders. We found similar findings in
independent cohorts from Singapore and the USA. We also
showed that RetiPhenoAge had stronger associations with
mortality andmorbidity than hand grip strength, telomere length,
and physical activity. Compared with most previous biological
ageing markers, this novel marker is non-invasive and does not
require any laboratory processing.

Implications of all the available evidence
RetiPhenoAge is a useful marker that could be used for additional
screening opportunities with the purpose of identifying people with
physiological alterations that could lead to increased risk ofmortality
and morbidity. Providing early recommendations in the context of
ageing populations could have major public health benefits.

See Online for appendix
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biomarkers.5–8 PhenoAge is an example of a biological
ageingmarker that combines different measures including
albumin, glucose, C-reactive protein, and chronological
age.9 PhenoAgehas beenshown to predict differences in the
risk of all-cause mortality, cause-specific mortality, physical
functioning, and cognitive performance measures among
individuals with the same chronological age. This biological
ageing marker can thus be used to approximate individual
differences in biological ageing. However, PhenoAge and
other similar markers are based on the measurement of
blood parameters, which is relatively invasive and requires
laboratory processing, thus limiting their clinical application.
The retina of the eye is amenable to non-invasive imaging

and rapid assessmentwithdigital photography andprovides
direct, non-invasive visualisation of the neural tissue and
microvasculature. For example, changes in retinal blood
vasculature might reflect a range of subclinical pathophy-
siological responses to hyperglycaemia and inflammation,10

and thus these changes are associatedwith increased risk of
chronic and age-related diseases.11,12 The geometrical
complexity of the retinal vasculature and the vessel calibres
are strongly affected by age.13 The retina also provides
information about neuronal structures, and changes in
nerve fibre layers are associated with other ageing disorders
including Alzheimer’s disease.14

We hypothesised that ageing-associated features
(ie, neural tissue and microvasculature) visualised in the
retina could facilitate the development of a composite
non-invasive biological ageing marker. We therefore devel-
oped a retinal photograph-based deep-learning algorithm to
estimate biological ageing based on PhenoAge measures.
First, we aimed to determine whether the performance of
thisnewbiological ageingmarker (referred toasRetiPhenoAge
hereafter) can robustly stratify risks for mortality (all-cause,
cardiovascular disease, and cancer) and disease events
(cardiovascular disease and cancer) independent of
chronological age, in three independent cohorts across three
continents. Second, we aimed to compare the performance
of this marker with the performance of other known ageing
biomarkers, suchashandgrip strengthand telomere length.
Third, we explored the underlying biology of RetiPhenoAge
by assessing its associations with different systemic
characteristics, bloodmetabolite levels, and genetic variants.

Methods
Study design
Full details of the study design are available in the
appendix (pp 1–8). Briefly, we first trained a deep-learning
algorithm to predict the composite score of PhenoAge,
based on retinal photographs taken without pupil dilation,
using data from the UK Biobank.15 All UK Biobank
participants with gradable retinal photographs without
missing data on mortality, morbidity, or any covariate used
in the analyses were included. The composite score of
PhenoAge was built with nine blood biomarkers plus
chronological age.9 We chose PhenoAge as the ground
truth for our deep-learning model because PhenoAge is
well-validated in several populations, including Australia,16

the UK,17 and the USA,18,19 and the ten variables required
for the model equation are available in UK Biobank data,
making the calculation feasible. We used a visual geometry
group, a deep convolutional neural network architecture
with multiple layers that is widely used for image
recognition,20 to develop our deep-learning-based ageing
marker, referred to as RetiPhenoAge hereafter. We aimed
to capture patterns and features in the retina associated
with variations of blood biomarkers related to renal,
immune, liver functions, inflammation, and energy
metabolism, and chronological age using retinal photo-
graphs. Retinal photographs, morbidity and mortality data,
and covariate data were also obtained from two inde-
pendent cohorts: the Singapore Epidemiology of Eye
www.thelancet.com/healthy-longevity Vol ▪ ▪ 2024
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Diseases (SEED) study21 (Singapore) and the Age-Related
Eye Disease Study (AREDS; USA)22 for the comparison of
associations of RetiPhenoAge with mortality and morbid-
ity. All SEED and AREDS participants with gradable
retinal photographs without missing data on mortality,
morbidity, or any covariate used in the analyses were
included.
Informed, written consent was obtained from all the

participantswho participated in the SEED study, and ethical
approval for SEED was obtained from the Institutional
ReviewBoard of SingHealth.Written informed consent and
ethical approval were obtained from all the participants of
the UK Biobank study and AREDS.

Procedures
Retinal photographs and blood sampleswere collected from
UK Biobank participants at the baseline visit between
2009 and 2010. Morbidity and mortality outcomes were
obtained from National Health Service registries up to
March 18, 2020. Mortality (all-cause, cardiovascular disease,
andcancer-related) anddisease events (cardiovasculardisease
and cancer) were defined by ICD-10 codes (appendix p 2).
For morbidity analyses, participants who reported having
cancer or cardiovascular disease at baseline were excluded
(appendix pp 2–3) to allow the calculation of the disease
incidences.
All outcomes from the SEED21 cohort were available up to

Dec 31, 2019, from the National Registry of Disease
office with mortality and disease events (including end-
stage renal diseases [ESRD]) defined by ICD-10 codes.
Outcomes from the AREDS21 cohort were available from
May 26, 1992, to Oct 20, 2005, with mortality and disease
events defined by ICD-10 codes (appendix pp 3–4). In both
SEED and AREDS, for morbidity analyses, participants who
reported having cancer, cardiovascular diseases, or ESRD at
baseline were excluded.
Furthermore, we compared the performance of RetiPheno-

Age and two well-known biomarkers (hand grip strength
[measured by hand grip dynamometer] and leukocyte
telomere length [adjusted for the influence of technical
parameters23]) and one lifestyle factor (physical activity
[defined as minutes per week participants spent walking,
andparticipating inmoderate or vigorousactivity]measured
using International Physical Activity Questionnaire-Short
Form24) for risk stratification of mortality and morbidity
for the UK Biobank data (appendix p 4). Then, we explored
the underlying biology of RetiPhenoAge by assessing its
associations with different systemic characteristics such as
diabetes and hypertension, and blood metabolite levels. We
also compared the performance of RetiPhenoAge in
risk-stratifying mortality and morbidity with the perform-
ance of a previous version of the biomarker, RetiAge
(appendix pp 4–5).25We also did a genome-wide association
study (GWAS), an expression quantitative trait loci
mapping, a gene-based analysis, and a gene-set analysis to
identify genetic variants associated with RetiPhenoAge and
www.thelancet.com/healthy-longevity Vol ▪ ▪ 2024
explore possible biological mechanisms underlying Reti-
PhenoAge (appendix p 5).

Statistical analysis
Weassessed thecorrelationbetweenRetiPhenoAge (predicted)
and PhenoAge (observed) using Pearson’s correlation
coefficients. We used Kaplan–Meier methods to evaluate
time to death and time to disease events across the
quartiles of RetiPhenoAge (quartiles were built based on
RetiPhenoAge to create four groups of equal number of
participants based on RetiPhenoAge score). Cox propor-
tional hazards models were used to estimate the hazard
ratios (HRs) and corresponding 95% CIs for the associa-
tions between RetiPhenoAge and the different outcomes.
To assess the ability of RetiPhenoAge for the risk stratifi-
cation of mortality and morbidity, four models were
used: model 1, no adjustment; model 2, adjusted for Phe-
noAge;model 3, adjusted for chronological age and sex; and
model 4, adjusted for PhenoAge, chronological age, sex,
BMI, systolic blood pressure, HDL cholesterol, LDL chol-
esterol, hypertension, diabetes, smoking, and ethnicity. In
these models, RetiPhenoAge scores were grouped into
quartiles from lowest to highest (quartile 1, RetiPhenoAge
score 0⋅000–0⋅064; quartile 2, 0⋅064–0⋅334; quartile 3,
0⋅334–0⋅659; quartile 4, 0⋅659–0⋅997). We also considered
RetiPhenoAge as a continuous variable in a sensitivity
analysis. We tested if the proportional hazards assumption
wasmet by visual inspection and by testing theSchoenfeld’s
residuals. We did other analyses to (1) compare the perform-
ance of RetiphenoAge with other biomarkers, (2) assess the
associations between RetiPhenoAge and systemic charac-
teristics and blood metabolite levels, and (3) to compare
the performance of RetiphenoAge with our previously
developed ageing marker RetiAge; full statistical methods
are in the appendix (pp 5–6). p values of less than 0⋅05 were
considered to indicate a statistically significant difference.
The deep-learning model was coded and run on Python
(version 3.8.18) and all statistical analyses were conducted
using R (version 4.3.1).
To investigate whether the performance of RetiPhenoAge

for predicting mortality and morbidity was affected by
age-related and non-age-related diseases, we did several
sensitivity analyses. In the SEEDcohort, the performance of
RetiPhenoAge was estimated in individuals with and in
individuals without cataract (defined using the Wisconsin
grading system26), age-related macular degeneration
(defined using a simplified Beckman grading system27),
and high myopia (defined as a spherical equivalent of
≤0⋅50dioptres). In theUKBiobank cohort, the performance
of RetiPhenoAge was estimated according to high myopia
status (defined as a spherical equivalent of ≤0⋅50 dioptres).
To investigate the ability of RetiPhenoAge to predict the
risks of ocular age-related diseases, in the SEED cohort, we
estimated the association of RetiPhenoAge with two
outcomes: age-related cataract (definedusing theWisconsin
grading system) and visual impairment (using the WHO
3
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UK BioBank population
(n=34 061)

Age, years 56⋅9 (8⋅3)
Sex

Female 18 322 (53⋅8%)
Male 15 739 (46⋅2%)

Albumin, g/L 45⋅7 (2⋅6)
Creatinine, μmol/L 73⋅2 (17⋅5)
Glucose, mmol/L 5⋅1 (1⋅0)
C reactive protein, mg/L 2⋅4 (4⋅0)
Lymphocytes, % 29⋅3% (7⋅6)
Mean corpuscular volume, fL 91⋅9 (4⋅5)
Red blood cell distribution width, % 13⋅5% (0⋅9)
Alkaline phosphatase, U/L 83⋅3 (24⋅9)
White blood cell count, × 109 cells per L 6⋅977 (2⋅0)
PhenoAGE 50⋅973 (10⋅0)
RetiPhenoAge 50⋅436 (6⋅7)
RetiAGE 0⋅339 (0⋅3)
Mortality outcome (n=34061)

Follow-up, years 9⋅9 (9⋅8–10⋅1)
All-cause mortality 1310 (3⋅8%)
Cardiovascular disease mortality 356 (1⋅0%)
Cancer mortality 545 (1⋅6%)

Cancer event outcome (n=30 277)*

Follow-up, years 9⋅9 (9⋅7–10⋅0)
Cancer events 5190 (17⋅1%)

Cardiovascular disease event outcome (n=30024)*

Follow-up, years 9⋅8 (9⋅7–10⋅0)
Cardiovascular disease events 736 (2⋅5%)

Data aremean (SD), n (%), or median (IQR). *Individuals who had an event before the
beginning of follow-up were excluded from the analysis.

Table 1: Characteristics of the UK Biobank study population
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definition:28 visual acuity worse than 6/12 [20/40] in the
better eye with the best possible correction).

Role of the funding source
The funders of the study had no role in study design, data
collection, data analysis, data interpretation, orwritingof the
report.

Results
Retinal photographs for 34 061 UK Biobank participants
were included in the testing dataset (mean age 56⋅9 years
[SD 8⋅3]; 18 322 [53⋅8%] females and 15 739 [46⋅2%] males;
table 1). During the 10-year follow-up period, 1310 (3⋅8%) of
the 34 061 participants died fromall causes, 356 (1⋅0%) died
from cardiovascular disease, and 545 (1⋅6%) died from
cancer. Among the participants free of cardiovascular
disease (n=30 024) or cancer events (n=30 277) before the
beginning of the follow-up, 736 (2⋅5%) had developed
cardiovascular disease and 5190 (17⋅1%) had cancer events
during the follow-up. The correlation between RetiPheno-
Age (predicted) and PhenoAge (observed) was strong with a
Pearson’s correlation coefficient of 0⋅71 (mean absolute
error 5⋅52 [95%CI 5⋅49–5⋅56]; rootmean squared error 7⋅28
[7⋅20–7⋅35]; appendix p 25).
We included data for 9429 participants from the SEED

cohort. The mean age of participants was 58⋅6 years
(SD 10⋅3) and 4753 (50⋅4%) of 9429 participants were
female and 4676 (49⋅6%) were male (appendix p 9).
During follow-up, 1778 (18⋅9%) of 9429 participants
died from any cause and 574 (6⋅1%) died from cardio-
vascular disease related causes. Among the participants
free of disease events at the beginning of the follow-up,
467 (5⋅1%) of 9184 participants had a stroke, 714 (8⋅1%)
of 8794 had a myocardial infarction, 834 (9⋅2%) of
9077 participants had cancer, and 159 (1⋅7%) of
9405 participants had (ESRD; data were not available for
AREDS participants).
We included data for 3950 participants from the AREDS

cohort (34 individuals died before the beginning of the
follow-up and were thus excluded from 3984 individuals
initially selected). The mean age of participants was
69⋅4 years (SD 5⋅1) and 2174 (55⋅0%) were female and
1776 (45⋅0%) were male (appendix p 9). During follow-up,
235 (5⋅9%) participants died from any cause and 97 (2⋅5%)
of 3950 participants died from cardiovascular disease
related causes. Among the participants free of disease
events at the beginning of the follow-up (cardiovascular
disease or cancer), 282 (8⋅0%) of 3541 participants had
a cardiovascular disease event, and 346 (10⋅6%) of
3250 patients had cancer.
In the unadjusted model (model 1), the magnitudes of

effect for all outcomes were high. For example, the risk of
cardiovascular disease mortality was 15 times higher in
RetiPhenoAge quartile 4 than RetiPhenoAge quartile 1
(HR 15⋅4 [95% CI 9⋅1–26⋅0]; table 2, figure 1). The magni-
tudes of effect decreased after adjustment for PhenoAge
(model 2; eg, for cardiovascular diseasemortality theHR for
quartile 4 was 4⋅27 [2⋅47–7⋅36] compared with quartile 1);
however, all the HRs corresponding to RetiPhenoAge
quartile 4 remained significant, with the exception of those
for cancer events. In the fully adjusted model (model 4;
adjusted for PhenoAge, chronological age, sex, BMI,
systolic blood pressure, HDL cholesterol, LDL cholesterol,
hypertension, diabetes, smoking, and ethnicity), all theHRs
corresponding to RetiPhenoAge quartile 4 were significant,
with the exception of those for cancer events. The highest
magnitude of effect for the fully adjusted model (model 4)
was for cancer mortality (HR 2⋅07 [95% CI 1⋅29–3⋅33]).
The results when considering RetiPhenoAge as a continu-
ous variable were similar (appendix p 10). The sensitivity
analysis by highmyopia status showed that the magnitudes
of effect were similar in individuals with high myopia and
the whole set of UK Biobank participants with an albeit
non-significant effect for cardiovascular events in individ-
uals with highmyopia, indicating thatmyopia did not affect
the performance of RetiphenoAge (appendix p 11). Finally,
to assess theproportional hazard assumption,weplotted the
estimates of the time-dependent coefficients of the survival
models, adjusted for age and sex, for the five outcomes,
and tested the Schoenfeld’s residuals (appendix p 26). All
www.thelancet.com/healthy-longevity Vol ▪ ▪ 2024
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N (N cases)
n/N

Model 1 Model 2 Model 3 Model 4

HR (95% CI) p value ptrend HR (95% CI) p value ptrend HR (95% CI) p value ptrend HR (95% CI) p value ptrend

All-cause mortality <0⋅0001 <0⋅0001 <0⋅0001 <0⋅0001
Q1 88/8834 1 (ref) 1 (ref) 1 (ref) 1 (ref)

Q2 221/8629 2⋅67 (2⋅08–3⋅42) <0⋅0001 1⋅65 (1⋅29–2⋅12) <0⋅0001 1⋅44 (1⋅1–1⋅89) 0⋅0077 1⋅38 (1⋅05–1⋅81) 0⋅0216
Q3 373/8488 4⋅67 (3⋅7–5⋅89) <0⋅0001 2⋅07 (1⋅62–2⋅63) <0⋅0001 1⋅72 (1⋅29–2⋅29) 0⋅0002 1⋅53 (1⋅14–2⋅03) 0⋅0042
Q4 628/8110 8⋅51 (6⋅81–10⋅64) <0⋅0001 2⋅9 (2⋅28–3⋅68) <0⋅0001 2⋅4 (1⋅77–3⋅24) <0⋅0001 1⋅92 (1⋅42–2⋅61) <0⋅0001

Cardiovascular disease mortality <0⋅0001 <0⋅0001 <0⋅0001 0⋅0248
Q1 15/8834 1 (ref) 1 (ref) 1 (ref) 1⋅0 [Reference]
Q2 53/8629 3⋅77 (2⋅12–6⋅69) <0⋅0001 2⋅15 (1⋅21–3⋅83) 0⋅0089 1⋅7 (0⋅92–3⋅14) 0⋅0890 1⋅52 (0⋅82–2⋅8) 0⋅1812
Q3 96/8488 7⋅09 (4⋅11–12⋅21) <0⋅0001 2⋅73 (1⋅57–4⋅74) 0⋅0004 1⋅94 (1⋅03–3⋅66) 0⋅0409 1⋅51 (0⋅8–2⋅86) 0⋅2034
Q4 192/8110 15⋅38 (9⋅09–26⋅01) <0⋅0001 4⋅27 (2⋅47–7⋅36) <0⋅0001 2⋅9 (1⋅5–5⋅6) 0⋅0015 1⋅97 (1⋅02–3⋅82) 0⋅0440

Cancer mortality <0⋅0001 <0⋅0001 0⋅0001 0⋅0093
Q1 35/8834 1 (ref) 1 (ref) 1 (ref) 1 (ref)

Q2 102/8629 3⋅0 (2⋅04–4⋅4) <0⋅0001 1⋅89 (1⋅28–2⋅78) 0⋅0013 1⋅71 (1⋅13–2⋅6) 0⋅0115 1⋅66 (1⋅09–2⋅52) 0⋅0176
Q3 159/8488 4⋅77 (3⋅31–6⋅88) <0⋅0001 2⋅17 (1⋅49–3⋅18) <0⋅0001 1⋅93 (1⋅24–3⋅02) 0⋅0037 1⋅73 (1⋅11–2⋅72) 0⋅0160
Q4 249/8110 7⋅91 (5⋅56–11⋅27) <0⋅0001 2⋅78 (1⋅9–4⋅06) <0⋅0001 2⋅52 (1⋅58–4⋅04) 0⋅0001 2⋅07 (1⋅29–3⋅33) 0⋅0027

Cardiovascular disease events

Q1 69/8351 1 (ref) <0⋅0001 1 (ref) <0⋅0001 1 (ref) 0⋅0002 1 (ref) 0⋅0099
Q2 159/7800 2⋅57 (1⋅94–3⋅41) <0⋅0001 1⋅72 (1⋅29–2⋅29) 0⋅0002 1⋅55 (1⋅13–2⋅12) 0⋅0062 1⋅42 (1⋅04–1⋅95) 0⋅0288
Q3 200/7296 3⋅53 (2⋅69–4⋅64) <0⋅0001 1⋅79 (1⋅34–2⋅39) <0⋅0001 1⋅52 (1⋅07–2⋅15) 0⋅0189 1⋅32 (0⋅93–1⋅87) 0⋅1217
Q4 308/6577 6⋅26 (4⋅82–8⋅13) <0⋅0001 2⋅57 (1⋅92–3⋅44) <0⋅0001 2⋅08 (1⋅43–3⋅01) 0⋅0001 1⋅70 (1⋅17–2⋅47) 0⋅0053

Cancer events <0⋅0001 <0⋅0001 0⋅0614 0⋅5888
Q1 917/8140 1 (ref) 1 (ref) 1 (ref) 1 (ref)

Q2 1189/7713 1⋅4 (1⋅29–1⋅53) <0⋅0001 1⋅07 (0⋅97–1⋅17) 0⋅1598 0⋅99 (0⋅89–1⋅09) 0⋅8110 0⋅98 (0⋅89–1⋅08) 0⋅6675
Q3 1477/7417 1⋅86 (1⋅72–2⋅02) <0⋅0001 1⋅18 (1⋅07–1⋅3) 0⋅0008 1⋅06 (0⋅95–1⋅19) 0⋅3120 1⋅02 (0⋅91–1⋅15) 0⋅6927
Q4 1607/7007 2⋅2 (2⋅03–2⋅39) <0⋅0001 1⋅21 (1⋅1–1⋅35) 0⋅0002 1⋅09 (0⋅96–1⋅24) 0⋅1870 1⋅02 (0⋅89–1⋅15) 0⋅8156

Model 1, unadjusted; model 2, adjusted for PhenoAge (coded as continuous); model 3, adjusted for chronological age and sex; model 4, adjusted for PhenoAge (coded as continuous), chronological age, sex, BMI, systolic
blood pressure, HDL cholesterol, LDL cholesterol, hypertension, diabetes, smoking status, ethnicity. RetiPhenoAge quartiles: Q1, RetiPhenoAge score 0⋅000–0⋅064; Q2, 0⋅064–0⋅334; Q3, 0⋅334–0⋅659; Q4, 0⋅659–0⋅997.
HR=hazard ratio. Q=quartile.

Table 2: Risk of mortality and morbidity associated with RetiPhenoAge by quartile in the UK Biobank study
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Schoenfeld’s residuals were visually independent of time
and were non-significant, indicating that the assumption
was met for all outcomes.
To localise the retinal features contributing to RetiPheno-

Age, we generated saliency maps (appendix p 27), which
indicated that RetiPhenoAge commonly focuses on the
macula, optic disc, and retinal vessels.
In the SEED cohort, findings were similar: all HRs

corresponding to RetiPhenoAge quartile 4 in the model
adjusted for chronological age and sexwere significant, with
the exception of those for cancer events (appendix p 12).
PhenoAge could not be calculated in SEED because some
variables were not available. The highest HR corresponded
to ESRD (HR4⋅15 [95%CI 2⋅20–7⋅85]).When fully adjusted
(model 3), RetiPhenoAge quartile 4 was not significant for
all outcomes, however, the risks of myocardial infarction
(ptrend=0⋅040) and ESRD events (ptrend=0⋅046) were
increased for each quartile increase in RetiPhenoAge. The
sensitivity analysis of cataract status showed that the
magnitudes of effect were decreased in individuals with
cataract when compared with the whole set of SEED
participants, except for cancer events (appendix pp 13–14).
However, in individuals with cataract, increase in
www.thelancet.com/healthy-longevity Vol ▪ ▪ 2024
RetiPhenoAge SD was significantly associated with
increased risks of cardiovascular disease mortality
(p=0⋅010), stroke events (p=0⋅016), myocardial infarction
(p=0⋅038), and ESRD (p=0⋅003) (appendix pp 13–14). The
findings of the sensitivity analyses by age-related macular
degeneration (appendix pp 15–16) and high myopia status
(appendix p 17) were similar; in individuals with age-related
macular degeneration,RetiPhenoAge (per SD increase)was
associated with cardiovascular mortality (p=0⋅041), stroke
events (p=0⋅005), myocardial infarction (p=0⋅053), and
ESRD (p=0⋅002). In individuals with high myopia, Reti-
PhenoAge per SD increase was associated with cardiovas-
cular mortality (p=0⋅007) and myocardial infarction
(p=0⋅001; appendix pp 13–16). Furthermore, RetiPhenoAge
was associated with age-related cataract and visual impair-
ment. For each 1-SD increase in RetiPhenoAge, the sex and
age-adjusted odds ratios were 1⋅93 (95% CI 1⋅80–2⋅07;
p<0⋅0001) for age-related cataract and 1⋅27 (1⋅21–1⋅34;
p<0⋅0001) for visual impairment (appendix p 28). In the
AREDScohort, inmodel 3, the riskof cardiovascular disease
mortality was almost two times higher in RetiPhenoAge
quartile 4 than RetiPhenoAge quartile 1 (HR 1⋅92 [95% CI
1⋅01–3⋅64]; appendix p 18).The risk of cardiovascular events
5
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Figure 1: Kaplan–Meier estimates of mortality and morbidity events by RetiPhenoAge quartiles in UK Biobank participants
(A) All-causemortality. (B) Cardiovascular diseasemortality. (C) Cancermortality. (D) Cardiovascular disease events. (E) Cancer events. Shading indicates 95%CIs.Q=quartile.
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in 1 SD in RetiPhenoAge. All models were adjusted for chronological age and sex.
For right hand grip strength, telomere length, and physical activity, we inversed
the distribution (1 – the actual value) to obtain the same direction of effect for that
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Figure 3: Associations between RetiPhenoAge and different systemic and
metabolic characteristics in UK Biobank participants
The pie chart represents the effects estimated over the range of possible values,
expressed as percentages. Effects were estimated using a linear regression model
adjusted for chronological age (appendix p 19).
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was increased for each quartile increase in RetiPhenoAge
(ptrend=0⋅015).
RetiPhenoAge had stronger associations (absolute

magnitude of effect), with all five outcomes than did physical
activity, telomere length, and hand grip strength (figure 2).
For allfiveoutcomes,HRsofRetiPhenoAgewerehigher than
HRs of hand grip strength, telomere length, and physical
activity. For all-cause mortality, the HR was 1⋅49 (95% CI
1⋅34–1⋅67) for each 1-SD increase in RetiPhenoAge, 1⋅21
(1⋅11–1⋅33; p=0⋅013) for each 1-SD increase in hand grip
strength, 1⋅08 (1⋅01–1⋅15; p=0⋅002) for each 1-SD increase in
telomere length, and 1⋅28 (1⋅19–1⋅38; p<0⋅0001) each 1-SD
increase in physical activity (figure 2).
Increases in RetiPhenoAge were positively associated

with increased BMI and increased risk of hypertension,
diabetes, and smoking (figure 3). In addition to the
www.thelancet.com/healthy-longevity Vol ▪ ▪ 2024
contribution from PhenoAge (57⋅9%), we found that
the BMI also contributed to 16⋅7% of variations in
RetiPhenoAge, followed by 11⋅9% for smoking, 9⋅0% for
diabetes, 3⋅7% for hypertension, and 0⋅8% for dyslipidaemia
(appendix p 19). RetiPhenoAge was positively associated with
glucose, lactate, and glycoprotein acetyl concentrations; and
negatively associated with concentrations of omega-3
fatty acid, linoleic acid, citrate, cholesterol ester in chylo-
microns, and extremely large VLDL (appendix pp 20, 29).
After correcting for multiple testing, only the associations
with citrate, glucose, and lactate remained significant.
The GWAS performed in White individuals from UK

Biobank (n=29871) identified two genetic loci (single
nucleotidepolymorphisms [SNPs] rs3791224and rs8001273)
that were associated with RetiPhenoAge at the genome-wide
level (appendix pp 21, 30). The summary statistics of the
GWAS were not affected by population stratification, with a
genome inflation indicator λ of 1⋅047 (intercept of linkage
disequilibrium score regression 1⋅014). The SNP rs3791224
is located in an intron of theSH3YL1 gene on chromosome 2
and was linked to three expression quantitative trait locis
in various tissues, including the heart, kidneys, and
the brain, for the genes SH3YL1, FAM150B, and ACP1
(appendix pp 22–23). These three genes were also identified
in gene-based analysis (appendix p24). TheSNPrs8001273 is
located in an intergenic region between LINC01072 and
GJA3 on chromosome13 andwas associatedwith expression
quantitative trait loci ofCRYL1, specifically in the aorta artery
7
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(appendix pp 22–23). No pathways were identified by the
gene-set analysis at the genome-wide level.
Compared with RetiAge, the magnitudes of association

for all outcomes, with the exception of cancer events, were
higher for RetiPhenoAge, regardless of the adjustment
strategy used (appendix p 31). For example, people in
RetiPhenoAge quartile 4 (compared to quartile 1) had
higher increases in all-cause mortality (HR 2⋅06 [95% CI
1⋅52–2⋅79]) than people in RetiAge quartile 4 (compared to
quartile 1; 1⋅34 [1⋅09–1⋅66]), cardiovascular disease
mortality (2⋅23 [1⋅15–4⋅33] vs 1⋅62 [1⋅03–2⋅54]), and cancer
mortality (2⋅00 [1⋅36–2⋅95] vs1⋅38 [1⋅06–1⋅82]), independent
of chronological age, sex, BMI, systolic blood pressure,
HDL cholesterol, LDL cholesterol, hypertension, diabetes,
smoking, or ethnicity.

Discussion
We developed a new retinal ageing marker, RetiPhenoAge,
by training a deep-learning model to predict a composite
marker of biological ageing based on clinical measures
(PhenoAge) using retinal photographs. First, we showed
this new non-invasive biological ageing marker (RetiPheno-
Age) was strongly associated with all the major ageing
outcomes considered, independent of PhenoAge and other
confounders. In the UK Biobank cohort, individuals in
quartile 4 of RetiPhenoAge had an increased risk of all-cause
mortality (HR 1⋅92 [95% CI 1⋅42–2⋅61]), cardiovascular
disease mortality (1⋅97 [1⋅02–3⋅82]), cancer mortality
(2⋅07 [1⋅29–3⋅33]), and cardiovascular disease events
(1⋅70 [1⋅17–2⋅47]) when compared with people in RetiPheno-
Age quartile 1. However, RetiPhenoAge did not perform
well for cancer events (HR 1⋅02 [95% CI 0⋅89–1⋅15]).
We found similar findings in independent cohorts from
Singapore and the USA: RetiPhenoAge was associated
with all-cause mortality, cardiovascular disease mortality,
cardiovascular disease events, andESRD inSEED; andwith
cardiovascular diseasemortality and cardiovascular disease
events in AREDS, independent of chronological age and
sex. Second, we found that RetiPhenoAge had stronger
associations with mortality and morbidity compared with
hand grip strength, telomere length, and physical activity.
Third, we identified BMI, smoking status, and diabetes as
the most contributing factors to RetiPhenoAge variations.
Fourth, RetiPhenoAge was associated with several blood
glycolysis related metabolites, including citrate and lactate.
RetiPhenoAge had similar strength of associations with

regard to all-cause mortality compared with other ageing
measurements such as DNA methylation or accelerated
ageing related to oxidative stress.5 In our study, we further
compared RetiPhenoAge with other known ageing
biomarkers such as telomere length andhand grip strength.
Shorter telomere length has been found to be associated
with an increased overall risk of death;7,29 and hand grip
strength is highly predictive of functional limitations and
disability.8 Moreover, physical activity is strongly associated
with mortality,30 therefore we included it in the compar-
isons. Overall, RetiPhenoAge had stronger associations
with mortality and morbidity outcomes than the other
biomarkers and lifestyle factors, with 10–30% higher
magnitude of effects. The largest differences were found
for all-cause and cancer mortality. Furthermore, studies in
ageing biomarkers have explored various imagemodalities,
such as lens images,31 3D facial imaging,32 chest x-ray,33 and
brain MRI.34 However, the majority of these studies have
relied on chronological age as the ground truth in their
deep-learning models to estimate biological ageing. This
approach might overlook nuanced ageing characteristics.
Using PhenoAge to estimate biological ageing enabled the
mitigation of this important limitation in our study. In
contrast to the use of facial age, RetiPhenoAge poses fewer
ethical or privacy concerns.
RetiPhenoAge, compared with other biological ageing

markers such as DNA methylation or telomere length, is
relatively simple and non-invasive. We also showed that
RetiPhenoAge had better risk stratification abilities (for all
the outcomes with the exception of cancer events) than a
previous version of the ageingmarker (RetiAge), which was
based on estimating chronological age from retinal images.
Another similar deep-learning-based retinalmarker (retinal
age gap), which is also based on estimating chronological
age from retinal images, was found to be associated with
mortality35 and other health outcomes.36 Based on these
findings, we believe that RetiPhenoAge could be a useful
marker that could be used for additional screening oppor-
tunities with the purpose of identifying people with
physiological alterations that could lead to increased risk of
mortality and morbidity. Such an algorithm would poten-
tially serve as a feasible and scalable risk stratification tool in
the community. Furthermore, considering the increasing
availability and affordability of retinal cameras and their
wide use in community screening programmes, this new
algorithm could be potentially widely adopted and inte-
grated into existing screening programmes, without the
need for blood collection or time-consuming laboratory
processingof samples.Providingearly recommendations in
the context of ageing population might have major public
health benefits.
Furthermore, to investigate the underlying biology of

RetiPhenoAge, we determined the associations between
RetiPhenoAge and several systemic and metabolic charac-
teristics. To do so, we regressed RetiPhenoAge with these
factors while adjusting for PhenoAge (ground truth infor-
mation used to build RetiPhenoAge). We determined the
contributions of the systemic and metabolic characteristics
to our retinal marker, after removing the effect PhenoAge.
The characteristics that contributed the most were BMI,
smoking, and diabetes status. Together these characteristics
contributed to around 40% of the variations in RetiPheno-
Age, compared with around 60% for PhenoAge. This
difference reflects how RetiPhenoAge was predicted by
the deep-learning algorithm with clinical biomarkers
(PhenoAge) and retinal photographs. It is well established
that retinal vasculature contain systemic information and
that changes in this vasculature are associated with
www.thelancet.com/healthy-longevity Vol ▪ ▪ 2024
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diabetes and kidney disease.13,37,38 This innovativemethod of
combining anatomical (retinal) and clinical information
through the deep-learning training enabled the develop-
ment of a marker associated with a wide range of physio-
logical deteriorations and thus able to discriminate for
several causes of mortality and morbidity. RetiPhenoAge
was associated with several blood glycolysis related metab-
olites. RetiPhenoAge was negatively associated with citrate
and positively with glucose and lactate concentrations. The
associations with glucose were expected because glucose
concentrationswere used to calculate PhenoAge.Regarding
citrate concentrations, there is evidence that citrate can
induce inflammatory cytokines before the detection of
age-relateddisease.39Moreover, lactate concentrations in the
brain are increased in mice during ageing.40

We identified two genetic loci associated with RetiPheno-
Age. rs8001273 was associated with the expression of
CRYL1 specifically in the aortic artery; and rs3791224 with
the expression of SH3YL1 in many tissues including heart
and kidney tissues, and ACP1 in several tissues including
heart tissue. SH3YL1 protein belongs to the SH3 domain-
containing family of proteins, which are involved in
various cellular processes, including signal transduction,
cytoskeletal organisation, and vesicular trafficking. The
plasma concentration of thisproteinhas beensuggested as a
novel biomarker for diabetic nephropathy in patients with
type 2 diabetes.41 Two loci located in SH3YL1 and ACP1
genes were associated with a retinal ageing clock.42 The
CRYL1 gene codes for the crystallin λ 1 protein, which is
mainly expressed in the lens but also in other tissues,
including the aortic artery.43 Expression of this protein in the
aorta artery might be upregulated in response to patho-
logical conditions to protect against oxidative stress and
cellular damage. Furthermore, previous studies have linked
CRYL1 to Alzheimer’s disease.44 It has also been shown that
levels of CRYL1 could be a novel prognostic marker of renal
cell carcinoma.45

Strengths of this study included the utilisation of one
large study (UK Biobank) for the development of our
deep-learning model, and inclusion of two independent
studies (SEED and AREDS) from different continents for
the replication of the findings. Although smaller effect sizes
were observed in SEED and AREDS, similar trends were
observed, indicating the robustness of our results and the
possible utility of RetiPhenoAge, regardless of ethnicity.
Further studies are needed to confirm the generalisability of
results to other populations. Moreover, we compared the
stratification ability of ourmarker with several other known
biomarkers.We further investigated the underlying biology
by determining the associations with many systemic and
metabolic characteristics, including 147 blood metabolites.
We found that the performance of RetiPhenoAge in
predicting mortality and morbidity in individuals with
age-related macular degeneration and high myopia was
similar to the performance in the whole population, sug-
gesting that age-related and non-age-related eye diseases
might not greatly alter the performance of RetiPhenoAge.
www.thelancet.com/healthy-longevity Vol ▪ ▪ 2024
This study also has limitations. First, in the UK Biobank
study, cardiovascular disease and cancer status were
self-reported at baseline and thus theremight be recall bias.
Second, RetiPhenoAge was trained and tested using data
for participants included in the UK Biobank, which could
have led to overfitting issues. However, we believe this did
not affect the findings since in the testing dataset we
determined the associations between RetiPhenoAge and
different morbidity and mortality outcomes (and not the
prediction of PhenoAge). Moreover, we found similar
trends in two independent datasets. Although our findings
need to be further validated, this suggested that our
findings might be generalisable to other populations.
Third, coefficients estimated from the National Health and
Nutrition Examination Survey in the USA were used to
calculated PhenoAge inUKBiobank participants. Although
this prevented overfitting issues, this could also have
introduced a bias in our ground truth estimation. Never-
theless, PhenoAge has been validated in several populations
(using the coefficients estimated in the original cohort),
including Australia,16 the UK,17 and the USA,17,18 demon-
strating its robustness. Fourth, we found that the perform-
ance of RetiPhenoAge inpredictingmortality andmorbidity
in individuals with cataract remained significant for most
outcomes (cardiovascular disease mortality, stroke events,
myocardial infarction, and ESRD), but with a smaller
magnitude of effect. We acknowledge that the key deter-
minant in obtaining clear retinal images is the transparency
of the refractivemedia, and thus in eyeswith severe cataract,
the quality of retinal images would be compromised and
retinal photography might fail to capture essential retinal
features. Finally, the deep-learning model used to estimate
RetiPhenoAge tended to overestimate the predictions for
younger participants and underestimate predictions for
older participants. However, older individuals are at higher
risk of mortality and morbidity. If these individuals had a
lower RetiphenoAge score than expected, the associations
between RetiPhenoAge and the outcomes for these indi-
viduals might thus have been underestimated. Therefore,
this conservative bias should not affect our conclusion.
Further refinement of deep-learning models is needed to
correct for this bias.
In summary, we developed and validated a novel marker

of biological ageing, RetiPhenoAge, which was developed
and trained on retinal photographs using deep learning
algorithm with composite clinical phenotypic information.
We showed this new non-invasive biological ageingmarker
is strongly associated with several mortality and morbidity
outcomes, including cardiovascular disease and renal out-
comes, independent of confounders. Our validation using
two independent large cohorts validation that RetiPheno-
Age is a robust predictor of mortality and morbidity out-
comes,which could thusprovide anovelnon-invasiveway to
measure ageing.
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